DRAFT

AUTOMOTIVE INDUSTRY STANDARD

Electric vehicle conductive
AC charging system

(DRAFT VERSION)

ARAI

Date of hosting on website: 12th December 2015
Last date of comments: 11th January 2016
Contents
1 Scope 5
2 References 8
3 Terms and definitions 8
4 General requirements 13
5 Rating of the supply a.c. voltage 13
6 General system requirement and interface 13
 6.1 General description 13
 6.2 EV charging modes 13
 6.2.1 AC Slow Charging Mode 13
 6.2.2 AC Fast Charging Mode 14
 6.3 Extension Sets and Adapters 15
 6.3.1 Cord extension set 15
 6.3.2 Adaptors 15
 6.4 Safety Functions provided in EVSE-AC 15
 6.4.1 Details of Mandatory Safety Functions 15
 6.4.2 Details of Optional Safety functions 16
 6.4.3 Details of pilot function 17
 6.4.4 Details of Proximity function 17
 6.5 Vehicle Identification Functions provided in EVSE-AC 17
 6.6 Energy Metering Functions provided in EVSE-AC 17
 6.7 Functions related to Communication to Grid 17
7 Protection against electric shock 17
 7.1 General requirements 17
 7.2 Protection against direct contact 17
 7.2.1 General 17
 7.2.2 Accessibility of live parts 17
 7.2.3 Stored energy – discharge of capacitors 18
 7.3 Fault protection 18
 7.4 Supplementary measures 18
 7.5 Additional requirements 19
8 Connection between the EVSE and the EV 19
 8.1 General 19
8.2 Contact sequencing for AC Fast Charging 19

9 Specific requirements for vehicle inlet, connector, plug and socket-outlet 19

9.1 General requirements 19
9.2 Operating temperature 19
9.3 Service life of inlet/connector and plug/socket-outlet 20
9.4 Breaking capacity 20
9.5 IP degrees 20
9.6 Insertion and extraction force 20
9.7 Latching of the retaining device 20

10 Charging cable assembly requirements 20
10.1 Electrical rating 20
10.2 Electrical characteristics 20
10.3 Dielectric withstand characteristics 20
10.4 Mechanical characteristics 21

11 EVSE requirements 21
11.1 General test requirements 21
11.2 Standard conditions for operation in service and for installation 21
11.3 Classification 21
11.4 IP degrees for EVSE 21
11.4.1 IP degrees for ingress of objects 21
11.4.2 Protection against electric shock 22
11.5 Functional and constructional requirements 22
11.5.1 Control functions 22
11.5.2 Emergency service 22
11.5.3 Permissible surface temperature 23
11.5.4 Storage means for the cable assembly 23
11.5.5 Location of the socket-outlet and storage means for the connector 23
11.6 Dielectric withstand characteristics 23
11.6.1 Dielectric withstand voltage 23
11.6.2 Impulse dielectric withstand (1,2/50 IJS) 24
11.7 Insulation resistance 24
11.8 Clearances and creepage distances 24
11.9 Leakage – touch current 24

11.10 Electrical safety 25
 11.10.1 Protection against indirect contact 25
 11.10.2 Earthing electrode and continuity 25
 11.10.3 Detection of the electrical continuity of the protective conductor 26

11.11 Environmental tests 26
 11.11.1 Climatic environmental tests 26
 11.11.2 Mechanical environmental tests 30
 11.11.3 Electromagnetic environmental tests 32

11.12 Latching of the retaining device 37

11.13 Service 37

11.14 Marking and instructions 37
 11.14.1 Connection instructions 37
 11.14.2 Legibility 38
 11.14.3 Marking of EVSE - AC 38

11.15 Telecommunication network 38

Annexures Error! Bookmark not defined.

ANNEX A : Pilot function through a control pilot circuit using PWM modulation and a control pilot wire 39

ANNEX B: Example of a circuit diagram for a basic vehicle coupler 47

ANNEX C : Connectors for AC Slow Charging and AC Fast Charging 51

ANNEX D : Cable Assembly for AC Slow Charging and AC Fast Charging 53

ANNEX E : EVSE Categories Based On Load Capacity 57

ANNEX F : Power Converters (AC to DC) 58

ANNEX G : Periodic Compliance of EVSE 59
<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>PARTICULARS</th>
<th>REMARKS</th>
</tr>
</thead>
</table>
| 2. | Add an explanatory note indicating differences between the above standard and the draft, if any. | - Use Cases are replaced and defined to suit Indian requirements
- Environmental requirements are different
- Connector for AC Slow Charging is different |
| 3. | Specify details of technical specifications to be submitted at the time of type approval relevant to the requirements of this standard covered. | Refer Annex 1 |
| 4. | Are the details of Worst Case Criteria covered? | NA |
| 5. | Are the performance requirements covered? | Yes |
| 6. | Is there a need to specify dimensional requirements? | Specified wherever required |
| 7. | If yes, are they covered? | |
| 8. | Is there a need to specify COP requirements? | |
| 9. | Is there a need to specify type approval and routine test separately, as in the case of some of the Indian Standards? | Yes, the tests are specified |
| 10. | If the standard is for a part/component or sub-system;
 i) AIS-037 or ISI marking scheme be implemented for this part?
 ii) Are there any requirements to be covered for this part when fitted on the vehicle?
 If yes, has a separate standard been prepared? | This standard is for equipment that will not be fitted on to a vehicle |
| 11. | If the standard is intended for replacing or revising an already notified standard, are transitory provisions for re-certification of already certified parts/vehicles by comparing the previous test result, certain additional test, etc. required?
 If yes, are they included? | The standard is not intended to replace any notified AIS Standard |

CHECK LIST FOR PREPARING AUTOMOTIVE INDUSTRY STANDARD
AIS-138: Electric vehicle conductive AC charging system
<table>
<thead>
<tr>
<th></th>
<th>Include details of any other international or foreign national standards which could be considered as alternate standard.</th>
<th>IEC 61851 Part 1,22 GB/T 18487 Part 1,2,3 SAE J1772</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Are the details of accuracy and least counts of test equipment/meters required to be specified? If yes, have they been included?</td>
<td>NA</td>
</tr>
<tr>
<td>15.</td>
<td>If possible, identify such facilities available in India.</td>
<td>Partly available. Loads Etc. facilities to be set-up.</td>
</tr>
<tr>
<td>16.</td>
<td>Are there any points on which special comments or information is to be invited from members? If yes, are they identified?</td>
<td>No</td>
</tr>
<tr>
<td>17.</td>
<td>Does the scope of standard clearly identify vehicle categories?</td>
<td>Yes</td>
</tr>
<tr>
<td>18.</td>
<td>Has the clarity of definitions been examined?</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Annex 1

<table>
<thead>
<tr>
<th>No</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type – Slow/Fast</td>
</tr>
<tr>
<td>2</td>
<td>Input Specifications : Rated Voltage, Current, Frequency, 1 φ / 3φ</td>
</tr>
<tr>
<td>3</td>
<td>IP Degree</td>
</tr>
<tr>
<td>4</td>
<td>Operating Temperature</td>
</tr>
<tr>
<td>5</td>
<td>Di electric Characteristics</td>
</tr>
<tr>
<td>6</td>
<td>Insulation Resistance</td>
</tr>
<tr>
<td>7</td>
<td>Safety Features</td>
</tr>
<tr>
<td>8</td>
<td>Class</td>
</tr>
<tr>
<td></td>
<td>- Based on Cable Configuration</td>
</tr>
<tr>
<td></td>
<td>- Based on Load Capacity</td>
</tr>
</tbody>
</table>
1 Scope

This standard applies to charging electric road vehicles at standard a.c. supply voltages (as per IS 12360/IEC 60038) up to 1000 V and for providing electrical power for any additional services on the vehicle if required when connected to the supply network.

Electric road vehicles (EV) implies all road vehicles (2/3/4 Wheelers), including plug in hybrid road vehicles (PHEV), that derive all or part of their energy from on-board batteries.

The aspects covered include characteristics and operating conditions of the supply device and the connection to the vehicle; operators and third party electrical safety, and the characteristics to be complied with by the vehicle with respect to the EVSE-AC, only when the EV is earthed.

Requirements for specific inlet, connector, plug and socket-outlets for EVs are referred in AIS 038. This standard does not cover all safety aspects related to maintenance.

This standard is not applicable to trolley buses, rail vehicles and off-road industrial vehicles.

2 References

The following referenced documents are indispensible for the application of this document.

For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61851 – 1 Electric vehicle conductive charging system Part 1: General requirements

IEC 61851 – 22 Electric vehicle conductive charging system Part 22: AC electric vehicle charging station

IS 12360:1988/ IEC 60038:2009 Voltage bands for electrical installations including preferred voltages and frequency

SP 30: 2011 National Electrical Code (first revision) / IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IS/IEC 60529: 2001 Degrees of protection provided by enclosures (IP Code)

IEC/TR 60755:2008, General requirements for residual current operated protective devices

IS 1293:2005/ IEC 60884-1:2002, Plugs and socket-outlets for household and similar purposes – Part 1: General requirements

IEC 60884-2-5:1995, Plugs and socket-outlets for household and similar purposes – Part 2 particular requirements for adaptors

IEC 60947-3:2008, Low-voltage switchgear and control gear – Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units

IS/IEC 60990: 1999 Methods of measurement of touch current and protective conductor current

IS 14700 (Part 6/Sec 1)/ IEC 61000-6-1:2005, Electromagnetic compatibility (EMC) – Part 6-1: Generic standards – Immunity for residential, commercial and light-industrial environments

IS 14700 (Part 6/Sec 3)/ IEC 61000-6-3:2006, Electromagnetic compatibility (EMC) – Part 6-3: Generic standards – Emission standard for residential, commercial and light-industrial environments

IEC 61008-1:2010, Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs) – General rules

IEC 61009-1:2010, Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs) – General rules

IEC 61180-1:1992, High-voltage test techniques for low-voltage equipment – Part 1: definitions, test and procedure requirements
IEC 62196-1:2003, Plugs, socket-outlets, vehicle couplers and vehicle inlets – Conductive charging of electric vehicles Part 1: Charging of electric vehicles up to 250 A a.c. and 400 A d.c.

EN 50065-1:2001, Signalling on low-voltage electrical installations in the frequency range 3 kHz to 148.5 kHz – Part 1: General requirements, frequency bands and electromagnetic disturbances

IEC 61000-2-2:1990, Electromagnetic compatibility (EMC) -Part 2: Environment- Compatibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems

IEC 61000-3-2:2000, Electromagnetic compatibility (EMC) - Part 3-2: Limits- Limits for harmonic current emissions (equipment input current: 516 A per phase)

IS 14700 (Part 4/Sec 1): 1999 / IEC 61000-4-1:2000, Electromagnetic compatibility (EMC) - Part 4-1: Testing and measurement techniques- Overview of IEC 61000-4 series
IEC 61000-4-2:1995, Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Section 2: Electrostatic discharge immunity test - Basic EMC publication 2)

Amendment 1 (1998)
Amendment 2 (2000)

IS 14700 (Part 4/Sec 3) / IEC 61000-4-3:1995, Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test 3)

Amendment 1 (1998)
Amendment 2 (2000)

IS 14700 (Part 4/Sec 5) / IEC 61000-4-5:1995, Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test

IEC 61180-1:1992, High-voltage test techniques for low-voltage equipment- Part 1: Definitions, test and procedure requirements

CISPR 16 (all parts), Specification for radio disturbance and immunity measuring apparatus and methods

CISPR 22:1997, Information technology equipment- Radio disturbance characteristics- Limits and methods of measurement

3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

3.1 Basic insulation
Insulation of hazardous-live-parts which provides basic protection

3.2 Cable assembly
Piece of equipment used to establish the connection between the EV and socket-outlet or to the fixed charger

NOTE 1: It must be included in the EVSE or detachable (supplied with the vehicle).

NOTE 2: It includes the flexible cable and the connector and/or plug that are required for proper connection.
NOTE 3: A detachable cable assembly is not considered as a part of the fixed installation.

3.3 Charger
Power converter that performs the necessary functions for charging a battery

3.3.1 Class I charger
Charger with basic insulation as provision for basic protection and protective bonding as provision for fault protection

NOTE: Protective bonding consists of connection of all exposed conductive parts to the charger earth terminal.

3.3.2 Class II charger
Charger with
– Basic insulation as provision for basic protection, and
– Supplementary insulation as provision for fault protection, or in which
– Basic and fault protection are provided by reinforced insulation

3.3.3 Off-board charger
Charger connected to the premises wiring of the a.c. supply network (mains) and designed to operate entirely off the vehicle. In this case, direct current electrical power is delivered to the vehicle

3.3.3.1 Dedicated off-board charger
Off-board charger designed to be used only by a specific type of EV, which may have control charging functions and/or communication

3.3.4 On-board charger
Charger mounted on the vehicle and designed to operate only on the vehicle

3.4 Charging
all functions necessary to condition standard voltage and frequency a.c. supply current to a regulated voltage/current level to assure proper charging of the EV traction battery and/or supply of energy to the EV traction battery bus, for operating on-board electrical equipment in a controlled manner to assure proper energy transfer

3.4.1 AC Slow Charging
Charging with 230 V, 1 Phase, 15 A Outlet with connector IEC 60309 and related safety interlocks. For details refer 6.2.1

3.4.2 AC Fast Charging
Charging with 415 V, 3 Phase, 63 A Outlet with connector IEC 62196 and related safety interlocks. For details refer 6.2.2

3.5 Connection
Single conductive path
3.6 Control pilot
Control pilot is the control conductor in the cable assembly connecting the in-cable control box or the fixed part of the EVSE, and the EV earth through the control circuitry on the vehicle. It may be used to perform several functions.

3.7 Earth terminal
Accessible connection point for all exposed conductive parts electrically bound together

3.8 Electric vehicle/ EV/ Electric road vehicle (ISO)
Any vehicle propelled by an electric motor drawing current from a rechargeable storage battery or from other portable energy storage devices (rechargeable, using energy from a source off the vehicle such as a residential or public electric service), which is manufactured primarily for use on public streets, roads or highways.

3.8.1 Class I EV
An EV with basic insulation as provision for basic protection and protective bonding as provision for fault protection
NOTE: This consists of connection of all exposed conductive parts to the EV earth terminal.

3.8.2 Class II EV
EV in which protection against electric shock does not rely on basic insulation only, but in which additional safety precautions, such as double insulation or reinforced insulation, are provided, there being no provision for protective earthing or reliance upon installation conditions

3.9 EV supply equipment / EVSE
Conductors, including the phase, neutral and protective earth conductors, the EV couplers, attachment plugs, and all other accessories, devices, power outlets or apparatuses installed specifically for the purpose of delivering energy from the premises wiring to the EV and allowing communication between them if required.

3.9.1 EVSE AC
All equipment for delivering a.c. current to EVs, installed in an enclosure(s) and with dedicated functions.

3.9.1.1 EVSE AC Slow
EVSE that supports AC Slow type of charging as defined in 3.4.1

3.9.1.2 EVSE AC Fast
EVSE that supports AC Fast type of charging as defined in 3.4.2

3.9.2 Exposed conductive part
Conductive part of equipment, which can be touched and which is not normally live, but which can become live when basic insulation fails

3.9.3 Direct contact
Contact of persons with live parts
3.9.4 Indirect contact
Contact of persons with exposed conductive parts made live by an insulation failure

3.10 Live part
Any conductor or conductive part intended to be electrically energized in normal use

3.10.1 Hazardous live part
Live part, which under certain conditions, can result in an electric shock

3.12 Plug and socket-outlet
Means of enabling the manual connection of a flexible cable to fixed wiring

NOTE: It consists of two parts: a socket-outlet and a plug

3.12.1 Plug
Part of a plug and socket-outlet integral with or intended to be attached to the flexible cable connected to the socket-outlet

3.12.2 Socket-outlet
Part of a plug and socket-outlet intended to be installed with the fixed wiring

3.13 Power indicator
Resistor value identifying supply rating recognition by the vehicle

3.14 Retaining device
Mechanical arrangement which holds a plug or connector in position when it is in proper engagement, and prevents unintentional withdrawal of the plug or connector

3.15 Vehicle coupler
Means of enabling the manual connection of a flexible cable to an EV for the purpose of charging the traction batteries

NOTE: It consists of two parts: a vehicle connector and a vehicle inlet.

3.15.1 Vehicle connector
Part of a vehicle coupler intended to be attached to the flexible cable connected to the a.c. supply network (mains)

3.15.2 Vehicle inlet
Part of a vehicle coupler incorporated in, or fixed to, the EV or intended to be fixed to it

3.16 Function
Any means, electronic or mechanical, that insure that the conditions related to the safety or the transmission of data required for the mode of operation are respected

3.17 Pilot function
Any means, electronic or mechanical, that insures the conditions related to the safety or the transmission of data required for the mode of operation
3.18 Proximity function
A means, electrical or mechanical, in a coupler to indicate the presence of the vehicle connector to the vehicle

3.19 Standardized socket-outlet for EVSE AC Slow
IEC 60309 Industrial connector (Refer Annexure C for connector details)

3.20 Standardized socket-outlet for EVSE AC Fast
IEC 62196 Type 2 Connector (Refer Annexure C for connector details)

3.21 Residual Current Device (RCD)
Mechanical switching device designed to make, carry and break currents under normal service conditions and to cause the opening of the contacts when the residual current attains a given value under specified conditions

NOTE 1 A residual current device can be a combination of various separate elements designed to detect and evaluate the residual current and to make and break current. [IEC 60050-44:1998, 442-05-02]

3.22 Plug in hybrid electric road vehicle PHEV
Any electrical vehicle that can charge the rechargeable electrical energy storage device from an external electric source and also derives part of its energy from another source

3.23 Cord extension set
Assembly consisting of a flexible cable or cord fitted with both a plug and a connector

NOTE Detachable cable assembly supplied with the vehicle is not considered as a cord extension set.

3.24 Adaptor
A portable accessory constructed as an integral unit incorporating both a plug portion and one or more socket-outlets

3.25 Indoor use
Equipment designed to be exclusively used in weather protected locations

3.26 Outdoor use
Equipment designed to be allowed to be used in non-weather protected locations

3.27 Mandatory Safety functions
Mandatory Safety functions to be included in the EVSE. For details, refer 6.4.1

3.28 Optional Safety functions
Optional functions are functions that may enhance the performance or improve safety of the EVSE. For details, refer 6.4.2
4 General requirements
The EV shall be connected to the EVSE so that in normal conditions of use, the conductive energy transfer function operates safely.

In general, this principle is achieved by fulfilling the relevant requirements specified in this standard, and compliance is checked by carrying out all relevant tests.

**Periodic compliance of EVSE is to be ensured by authorised agencies.

5 Rating of the supply a.c. voltage

The rated value of the a.c. supplied voltage for the charging equipment is up to 1000 V. The equipment shall operate correctly within ±10 % of the standard nominal voltage. The rated value of the frequency is 50 Hz ± 3%

NOTE Nominal voltage values can be found in IS 12360.

6 General system requirement and interface

6.1 General description
One method for EV charging is to connect the a.c. supply network (mains) to an on-board charger. An alternative method for charging an EV is to use an off-board charger for delivering direct current. For charging in a short period of time, special charging facilities operating at high power levels could be utilized.

6.2 EV charging modes

6.2.1 AC Slow Charging Mode

AC Connector Interface (Single Phase, 230V, 15 A)

Connection of the EV to the a.c. supply network (mains) utilizing Single Phase EVSE – AC Slow with Charging outlet IEC 60309 (Industrial Type) with ratings not exceeding 15 A and 230 V +/- 10% utilizing the power and protective earth conductors, system of personnel protection against electric shock (RCD) and including Mandatory safety functions (refer 6.4.1) as part of the EVSE - AC Slow

Output Option 1 (EV without On-Board Charger)
Output Option 2 (EV with On-Board Charger)

Output Option 3 (Cable attached to EVSE- AC Slow)

6.2.2 AC Fast Charging Mode

AC Connector Interface (3 Phase, 415 V, 63A)

Connection of the EV to the a.c. supply network (mains) utilizing EVSE - AC Fast with charging outlet IEC 62196 Type 2 with ratings not exceeding 63A and 415 V +/- 10% where the control pilot function extends to control equipment in the EVSE, permanently connected to the a.c. supply network (mains). Mandatory and optional Safety functions (refer 6.4.2) are to be incorporated as a part of the EVSE – AC Fast.

Note*: As per ‘AMENDMENT NO. 4 NOVEMBER 2011 TO IS 12360: 1988’

Output Option 1 (Detachable Cable assembly)
Output Option 2 (Cable assembly integrated with EVSE)

Note**: Requirements for specific inlet, connector, plug and socket-outlets for EVs are referred in AIS 038.

6.3 Extension Sets and Adapters

6.3.1 Cord extension set
A cord extension set or second cable assembly shall not be used in addition to the cable assembly for the connection of the EV to the EVSE. The cable assembly shall be so constructed that it cannot be used as a cord extension set.

6.3.2 Adaptors
Adaptors shall not be used to connect a vehicle connector to a vehicle inlet.

6.4 Safety Functions provided in EVSE-AC

6.4.1 Details of Mandatory Safety Functions

6.4.1.1 Earth Presence Detection (Socket - EVSE)
Validate the presence of earth at the AC socket outlet during start of charging session and continuous/periodic monitoring during the charging session.

6.4.1.2 Earth Continuity Check (EVSE-EV)
Presence of earth between EV and EVSE during charging session is to be monitored. In AC Slow Charging, this is to be ensured at the vehicle side.

6.4.1.3 Over-voltage Protection
The EVSE should have protection against Over-Voltage.

6.4.1.4 Under-Voltage Protection
The EVSE should have protection against Under-Voltage.

6.4.1.5 Over Current and Short-Circuit Protection
The EVSE should have protection against Over-Current and Short-Circuit.

6.4.1.6 Leakage Current
Fault or leakage current inside the EVSE is to be detected and protection is to be provided in case of detection. Type of RCD (Type A minimum) and Fault Current Limit 30 mA
6.4.1.7 Connector Presence & Locking
It should be verified that the connector is properly connected and Connector is locked during charging period of the charge session to avoid accidental/unintentional disconnection. For AC Slow charging connector, this is to be ensured by physical attributes.

6.4.1.8 Environmental Protection
The EVSE should have protection against environmental conditions like Solar Radiation, Temperature, and Water.

Note: The protection against Environmental conditions will be checked under 11.4 and 11.11

6.4.1.9 Protection when Phase -Neutral Interchange occurs
Charging function for vehicle may not be inhibited provided Mandatory safety is fully functional even in case of Phase-Neutral interchange condition.

6.4.2 Details of Optional Safety functions

6.4.2.1 Verification that the vehicle is properly connected
The EVSE-AC Fast shall be able to determine that the connector is properly inserted in the vehicle inlet and properly connected to the EVSE. Vehicle movement by its own propulsion system shall be impossible as long as the vehicle is physically connected to the EVSE as required in ISO 6469-2.

6.4.2.2 Energization of the system
Energization of the system shall not be performed until the pilot function between EVSE and EV has been established correctly. Energization may also be subject to other safety conditions being fulfilled.

6.4.2.3 De-energization of the system
If the pilot function is interrupted, the power supply to the cable assembly shall be interrupted but the control circuit may remain energized.

6.4.2.4 Input Power Quality
Monitor the AC supply (Rated Power, Voltage & Frequency Tolerance) for possible faults and include necessary corrective measures.

6.4.2.5 Fail Safe Handling
Fail-safe operations should function when certain faults occur

6.4.2.6 Determination of ventilation requirements during charging
If additional ventilation is required during charging, charging shall only be allowed if such ventilation is provided.

6.4.2.7 Detection/adjustment of the real time available load current of EVSE
Means shall be provided to ensure that the charging rate shall not exceed the real time available load current of the EVSE and its power supply.

6.4.2.8 Retaining/releasing of the coupler
A mechanical means shall be provided to retain/release the coupler.
6.4.2.9 Selection of charging rate
A manual or automatic means shall be provided to ensure that the charging rate does not exceed the rated capacity of the a.c. supply network (mains), vehicle or battery capabilities.

6.4.3 Details of pilot function
For AC Fast Charging mode, a pilot function is mandatory. The pilot function shall be capable of performing at least the Mandatory Safety functions described above and may be capable of performing/contributing in optional functions.

NOTE: For details of Pilot Function and relevant examples refer Annex A

6.4.4 Details of Proximity function
For AC Fast Charging mode, Proximity function is mandatory.
NOTE: For implementation details Annexure B can be referred.

6.5 Vehicle Identification Functions provided in EVSE-AC
Details TBD

6.6 Energy Metering Functions provided in EVSE-AC
Details TBD

6.7 Functions related to Communication to Grid
Details TBD

7 Protection against electric shock

7.1 General requirements
Hazardous live parts shall not be accessible. Exposed conductive parts shall not become a hazardous live part under normal conditions (operation as intended use and in the absence of a fault), and under single-fault conditions. Protection against electric shock is provided by the application of appropriate measures for protection both in normal service and in case of a fault. For systems or equipment on board the vehicle, the requirements are defined in AIS 038. Protective bonding shall consist of connection of all exposed conductive parts to the EV earth terminal.

7.2 Protection against direct contact

7.2.1 General
Protection against direct contact shall consist of one or more provisions that under normal conditions prevent contact with hazardous-live parts. For systems or equipment on board the vehicle, the requirements are defined in AIS 038. Protective bonding shall consist of connection of all exposed conductive parts to the EV earth terminal.

7.2.2 Accessibility of live parts
When connected to the supply network, the EVSE shall not have any accessible hazardous live part, even after removal of parts that can be removed without a tool.
Compliance is checked by inspection and according to the requirements of IS/IEC 60529 (IPXXB).

NOTE Extra low voltage (ELV) auxiliary circuits which are galvanically connected to the vehicle body are accessible. Particular attention is drawn to the requirements for extra low voltage (ELV) circuit isolation when the traction battery is being charged using a non-isolated charger.

7.2.3 Stored energy – discharge of capacitors

7.2.3.1 Disconnection of EV
One second after having disconnected the EV from the supply (mains), the voltage between accessible conductive parts or any accessible conductive part and earth shall be less than or equal to 42.4 V peak, or 60 V d.c., and the stored energy available shall be less than 20 J (see IS 13252/IEC 60950). If the voltage is greater than 42.4 V peak (30 V rms) or 60 V d.c., or the energy is 20 J or more, a warning label shall be attached in an appropriate position.

Compliance is checked by inspection and by test.

7.2.3.2 Disconnection of EVSE
Conditions for the disconnections of the EVSE from the supply mains are identical to those required for the disconnection of the EV as indicated in 7.2.3.1.

7.3 Fault protection
Protection against indirect contact shall consist of one or more recognized provision(s).
According to SP 30: 2011 /IEC 60364-4-41, recognized individual provisions for fault protection are:
– Supplementary or reinforced insulation;
– Protective equipotential bonding;
– Protective screening;
– Automatic disconnection of supply;
– Simple separation.

7.4 Supplementary measures
To avoid indirect contact in case of failure of the basic and/or fault protection or carelessness by users, additional protection against electric shock shall be required. An RCD (I_{AN} < 30 mA) shall be provided as a part of the EV conductive supply equipment for earthed systems. The RCD shall have a performance at least equal to Type A and be in conformity with standard SP 30: 2011 /IEC 60364-4-41

Where power supply circuits that are galvanically separated from mains and are galvanically isolated from earth, electrical isolation between the isolated circuits and earth, and between the isolated circuits and exposed conductive parts of vehicle and EVSE shall be monitored.

When a fault condition related to the electrical isolation is detected, the power supply circuits shall be automatically de-energized or disconnected by the EVSE.
7.5 Additional requirements

Under normal conditions, malfunction and single-fault conditions, the charging system shall be designed to limit the introduction of harmonic, d.c. and non-sinusoidal currents that could affect the proper functioning of residual current devices or other equipment.

Class II chargers may have a lead-through protective conductor for earthing the EV chassis.

8 Connection between the EVSE and the EV

8.1 General

This clause provides a description of the physical conductive electrical interface requirements between the vehicle and the EVSE.

<table>
<thead>
<tr>
<th>Contact Number</th>
<th>IEC 60309</th>
<th>IEC 62196</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230 V, 15 A</td>
<td>415 V, 63 A</td>
<td>L1</td>
</tr>
<tr>
<td>2</td>
<td>415 V, 63 A</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>415 V, 63 A</td>
<td>L3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>230 V, 15 A</td>
<td>415 V, 63 A</td>
<td>Neutral</td>
</tr>
<tr>
<td>5</td>
<td>Rated for fault</td>
<td>Rated for Fault</td>
<td>PE</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Control Pilot</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Proximity</td>
</tr>
</tbody>
</table>

For details, refer Annexure C and Annexure D

8.2 Contact sequencing for AC Fast Charging

For safety reasons, the contact sequence during the connection process shall be such that the earth connection is made first and the pilot connection is made last. The order of connection of the other contacts is not specified. During disconnection, the pilot connection shall be broken first and the earth connection shall be broken last.

9 Specific requirements for vehicle inlet, connector, plug and socket-outlet

9.1 General requirements

The requirements for accessories for AC Slow charging are specified in IS/IEC 60309-1, IS/IEC 60309-2 (industrial type)
The requirements of EVSE systems for AC Fast Charging are specified in IEC 62196-1

9.2 Operating temperature

The EVSE-AC should be fully functional with all safety features in the temperature range of 0 to 55°C.
9.3 Service life of inlet/connector and plug/socket-outlet
The requirements for accessories of the standard interface are specified in IS/IEC 60309-1, IS/IEC 60309-2 (industrial type)
The requirements for accessories of the interface are specified in IEC 62196-1

9.4 Breaking capacity
The requirement for AC Slow Charging shall be in accordance with IEC 60309
The requirement for AC Fast Charging shall be in accordance with IEC 62196-1
For personal safety and to avoid damage due to disconnection under nominal current, the plug, the inlet, the connector or the socket-outlet shall have sufficient breaking capacity unless there is a switch with sufficient breaking capacity. Acceptable breaking capacity is reached by breaker level for a.c. application AC22A as defined in IS/IEC 60947-3, or breaker level for a.c. application AC2 as defined in IS/IEC 60947-6.

Avoidance of breaking under load can be achieved by a specific means on the connector or a system with interlock.

9.5 IP degrees
IP degrees for accessories are treated in 11.3.

9.6 Insertion and extraction force
The force required for connecting and disconnecting operations for the connector and inlet is in accordance with IEC 60309 for AC Slow Charging and IEC 62196-1 for AC Fast Charging

9.7 Latching of the retaining device
Latching or retaining if required may be a function of the complete system or the connector.

10 Charging cable assembly requirements

10.1 Electrical rating
The rated voltage of each conductor shall correspond to the rated voltage of the connecting means. The rated current shall correspond to the rating of the line circuit breaker.

10.2 Electrical characteristics
The voltage and current ratings of the cable shall be compatible with those of the charger.
The cable may be fitted with an earth-connected metal shielding. The cable insulation shall be wear resistant and maintain flexibility over the full temperature range.

For details, refer Annexure D

10.3 Dielectric withstand characteristics
Dielectric withstand characteristics shall be as indicated for the EVSE in 11.4.
10.4 Mechanical characteristics
The mechanical characteristics of the cable should be equivalent or superior to those of IS 9857 / IEC 60245-6 (Welding cable) as well as for fire resistance, chemical withstand, UV resistance.

The anchorage force of the cable in the connector or plug shall be greater than the retaining device force, if used.

For details, refer Annexure D

11 EVSE requirements

11.1 General test requirements
- All tests in this standard are type tests.
- Unless otherwise specified, type tests shall be carried out on a single specimen as delivered and configured in accordance with the manufacturer's instructions.
- The tests in 11.12 may be conducted on separate samples at the discretion of the manufacturer. Unless otherwise specified, all other tests shall be carried out in the order of the clauses and sub clauses in this part.
- The tests shall be carried out with the specimen, or any movable part of it, placed in the most unfavourable position which may occur in normal use.
- Unless otherwise specified, the tests shall be carried out in a draught-free location and at an ambient temperature of 20 to 30 °C.

Note: For details, refer IEC 61851 - 22

11.2 Standard conditions for operation in service and for installation
The rated value of the a.c. supply voltage is up to 1000 V. The equipment shall operate correctly within ±10% of the standard nominal voltage (see IS 12360). The rated value of the frequency is 50 Hz ± 3%

The operating temperature range during charging may be between 0 to 55 °C and at a relative humidity of between 5 % and 95 %.

11.3 Classification
EVSE- AC shall be classified according to exposure to environmental conditions:
- Outdoor use;
- Indoor use.

NOTE 1 EVSEs classified for outdoor use can be used for indoor use, provided ventilation requirements are satisfied.

11.4 IP degrees for EVSE

11.4.1 IP degrees for ingress of objects
Compliance is checked by test in accordance with IS/IEC 60529. The minimum IP degrees for ingress of object and liquids shall be:
Indoor use:
- Vehicle inlet mated with connector: IP21,
- Plug mated with socket outlet: IP21,
- Connector for Cable assembly integrated with EVSE, when not mated, indoor: IP21.

Outdoor use:
- Vehicle inlet mated with connector: IP44,
- Plug mated with socket outlet: IP44.

All cable assemblies shall meet outdoor requirements.
- EV inlet in "road" position: IP55.
- Connector when not mated: IP24,
- Socket-outlet when not mated: IP24.

NOTE 1 IPX4 may be obtained by the combination of the socket-outlet or connector and the lid or cap, EVSE - AC enclosure, or EV enclosure.
NOTE 2 EV inlet protection may be obtained by the combination of the inlet and vehicle design.

11.4.2 Protection against electric shock
- Vehicle inlet mated with connector: IPXXD;
- Plug mated with socket outlet: IPXXD;
- Connector intended for AC Slow Charging : IPXXD ;
- Connector intended for AC Fast Charging: IPXXB;
- Socket-outlet not mated: IPXXD (1).
- Energy transfer from vehicle to grid:
- Vehicle inlet not mated: IPXXD (2);
- Plug not mated: IPXXD (2).

Compliance is checked with the accessory in the installed position.
(1) Equivalent protection to IPXXD may also be obtained with IPXXB accessories if an isolating function is used according SP 30: 2011 /IEC 60364-4-41.
(2) Equivalent protection to IPXXD may also be obtained with IPXXB accessories if an isolating function is used on the vehicle according to requirements described in AIS 038

11.5 Functional and constructional requirements

11.5.1 Control functions
For AC Fast charging, the EVSE Fast charger provides part of the control functions listed in 6.4

11.5.2 Emergency service
An emergency disconnection device shall be installed to isolate the a.c. supply network (mains) from the EVSE - AC in case of risk of electric shock, fire or explosion. The disconnection device shall be provided with a means to prevent accidental operation.
11.5.3 Permissible surface temperature
The maximum permissible surface temperature of parts of the EVSE – AC which are hand grasped, at the maximum rated current and at an ambient temperature of 40 °C, shall be
50 °C for metal parts;
60 °C for non-metallic parts.

For parts which may be touched but not grasped, maximum permissible surface temperature under the same conditions shall be
60 °C for metal parts;
85 °C for non-metallic parts.

11.5.4 Storage means for the cable assembly
For AC Fast charging output option-2 (refer 6.2.2) connections, a storage means shall be provided for the cable assembly and vehicle connector when not in use. The EVSE – AC Fast should be provided with a means to indicate whether or not the cable assembly/vehicle connector has been stored as intended after disconnection from the vehicle.

11.5.5 Location of the socket-outlet and storage means for the connector
The lowest part of the socket-outlet (in output option 1 connections), or the storage means provided for the vehicle connector (in output option 2 connection), shall be located at a height between 0.4 m and 1.5 m above ground level in EVSE - AC Fast

11.6 Dielectric withstand characteristics
11.6.1 Dielectric withstand voltage
The dielectric- withstand voltage at power frequency (50 Hz) shall be applied for 1 min as follows:

a) For a class I a.c supply equipment
 - 2 000 V r.m.s. in common and differential mode*

b) For a class II a.c supply equipment
 - 4 000 V r.m.s. in common mode (all circuits in relation to the exposed conductive part)
 - 2 000 V r.m.s. in differential mode* (between each electrically independent circuit and all other exposed conductive part-oriented circuits)

c) For both class I and class II a.c supply equipment
 - 4 000 V r.m.s. between power circuits and extra low voltage circuits

The tests shall be carried out in accordance with the requirements of IEC 61180-1.

Note: *Differential testing is applicable for EVSE- AC fast only
Compliance/ Acceptance Criteria
- Output voltage stability to be ensured after the test.
- Insulation resistance to be verified.
- Protection against output short circuit to be verified.

11.6.2 Impulse dielectric withstand (1,2/50 IJS)
The dielectric withstand of the power circuits at impulse shall be checked as follows:

6000 V: in common mode (according to IEC 60664-1 installation category);
4000 V: in differential mode* (according to IEC 60664-1 installation category).

The test shall be carried out in accordance with the requirements of IEC 61180-1.

Note: *Differential testing is applicable for EVSE-AC fast only

Compliance/ Acceptance Criteria
- Output voltage stability to be ensured after the test.
- Insulation resistance to be verified.
- Protection against output short circuit to be verified.

11.7 Insulation resistance
The insulation resistance with a 500 V d.c. voltage applied between all inputs/outputs connected together (power source included) and the accessible parts shall be

For a class I station: $R_2 \geq 1 \text{ MQ}$
For a class II station: $R_2 \geq 7 \text{ MQ}$

The measurement of insulation resistance shall be carried out after applying the test voltage for 1 min and immediately after the damp heat test (see 11.1.4).

11.8 Clearances and creepage distances
Electrical devices installed in the charging stations shall have clearances and creepage distances complying with those specified in their relevant standards. For bare live conductors and terminations (for example, bus bars, connections between apparatus, etc.) clearances and creepage distances shall be chosen according to IEC 60664-1.

11.9 Leakage – touch current
The touch current shall be measured after the damp heat test (see 11.1.4), with the EVSE - AC connected to a.c. supply network (mains) in accordance with 5.1 of IEC 60950. The supply voltage shall be 1.1 times the nominal rated voltage.

The touch current between any a.c. supply network poles and the accessible metal parts connected with each other and with a metal foil covering insulated external parts, measured in accordance with IEC 60950, shall not exceed the values indicated in table 2.
Table 2- Touch current limits

<table>
<thead>
<tr>
<th></th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between any network poles and the accessible metal parts connected with each other and a metal foil covering insulated external parts</td>
<td>3,5 mA</td>
<td>0,25 mA</td>
</tr>
<tr>
<td>Between any network poles and the metal inaccessible parts normally non activated (in the case of double insulation)</td>
<td>Not applicable</td>
<td>3,5 mA</td>
</tr>
<tr>
<td>Between inaccessible and accessible parts connected with each other and a metal foil covering insulated external parts (additional insulation)</td>
<td>Not applicable</td>
<td>0,5 mA</td>
</tr>
</tbody>
</table>

This test shall be made when the EVSE – AC is functioning with a resistive load at rated output power.

NOTE: Circuitry which is connected through a fixed resistance or referenced to earth (for example, EV connection check) should be disconnected before this test.

The equipment is fed through an isolating transformer or installed in such a manner that it is isolated from the earth.

11.10 Electrical safety

The general requirements for electrical safety are specified in 7. In addition, the following requirements apply.

11.10.1 Protection against indirect contact

The protection against electric shock shall not be automatically reset. Manual reset shall be easily accessible to the user. Automatic reset of optional additional protection devices, as specified in 7, shall comply with national regulations.

11.10.2 Earthing electrode and continuity

The tests for a class I charging station earth electrode, where applicable, and earthing of the EVSE- AC shall be carried out in accordance with the national rules and safety requirements for earthing.

All exposed conductive parts of the EVSE - AC which could be connected to the supply voltage source, under fault conditions, shall be connected together in such a manner that they conduct electricity properly, so as to conduct potential fault currents to the earthed point of the a.c. supply network (mains).

Compliance is checked by testing the electrical continuity between exposed conductive parts and the earth circuit.
A current of 15 A, derived from a d.c. source having a no-load voltage not exceeding 12 V, is passed between any exposed conductive part and the earthing terminal of the charging station. For each exposed conductive part, the voltage drop is measured between these two points.

The resistance calculated from the current and measured voltage drop, between any exposed conductive part and the earth-circuit connection, shall not exceed 0.1 Ω.

For a class II charging station, there shall be a lead-through protective conductor.

11.10.3 Detection of the electrical continuity of the protective conductor
For AC Fast charging, the EVSE - AC Fast shall monitor the electrical continuity of the protective conductor to the electric vehicle. If the EVSE detects a loss of electrical continuity of the protective conductor, the electrical supply circuit to the vehicle shall be opened.

11.11 Environmental tests

11.11.1 Climatic environmental tests

11.11.1.1 General
During the following tests, the EVSE - AC shall function at its nominal voltage with maximum output power and current. After each test, the original requirements shall still be met.

11.11.1.2 Ambient air temperature
The EVSE - AC shall be designed to operate within the temperature range 0 °C to +55 °C.

These tests shall be carried out in accordance with the Nb test (change of temperature with specified rate of change) of IEC 60068-2-14/ IS 9000 (Part 14)- sec 2
Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temp T_A</td>
<td>0</td>
<td>°C</td>
</tr>
<tr>
<td>High temp T_B</td>
<td>+55</td>
<td>°C</td>
</tr>
<tr>
<td>Rate of Temp (Max)</td>
<td>1</td>
<td>°C/min</td>
</tr>
<tr>
<td>Time t1</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>No of cycles</td>
<td>2</td>
<td>--</td>
</tr>
</tbody>
</table>

EVSE Condition
Power ON with output loading for maximum power and current

EVSE Monitoring
Periodic measurements of output power and current during the test

Compliance/ Acceptance Criteria
- Output power and current values to be within specified band
- Safety checks
 - To ensure protection against short circuit
 - To check the insulation resistance

11.11.1.3 Dry heat
The test shall be in accordance with IEC 60068-2-2 Be or Bd test (dry heat)/ IS 9000 (Part 3) - sec 5

Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>55</td>
<td>°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td><50</td>
<td>%</td>
</tr>
<tr>
<td>Rate of Temp (Max)</td>
<td>1</td>
<td>°C/min</td>
</tr>
<tr>
<td>Duration</td>
<td>16</td>
<td>h</td>
</tr>
</tbody>
</table>

EVSE Condition
Power ON with output loading for maximum power and current

EVSE Monitoring
Periodic measurements of output power and current during the test

Compliance/ Acceptance Criteria
- Output power and current values to be within specified band
- Safety checks
 - To ensure protection against short circuit
 - To check the insulation resistance

11.11.1.4 Ambient humidity
The EVSE -AC shall be designed to operate with a relative humidity rate between 5 % and 95 %.
Damp heat cycle test
The test shall be carried out in accordance with IEC 60068-2-30/ IS 9000(Part 5/Sec 2), test Db, at 55°C for six cycles.

Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>55</td>
<td>°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95</td>
<td>%</td>
</tr>
<tr>
<td>Rate of Temp (Max)</td>
<td>1</td>
<td>°C/min</td>
</tr>
<tr>
<td>Duration</td>
<td>12 + 12</td>
<td>hours</td>
</tr>
<tr>
<td>No of cycles</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

EVSE Condition
Power ON with output loading for maximum power and current

EVSE Monitoring
Periodic measurements of output power and current during the test

Compliance/ Acceptance Criteria
- Immediately after damp heat within 1 min, Insulation Resistance test to be performed
- Output power and current values to be within specified band
- Safety checks to ensure protection against short circuit

11.11.1.5 Cold test
The test shall be carried out in accordance with IEC 60068-2-1 test Ab/ IS 9000(Part 2) - sec 3

Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0</td>
<td>°C</td>
</tr>
<tr>
<td>Rate of Temp (Max)</td>
<td>1</td>
<td>°C/min</td>
</tr>
<tr>
<td>Duration</td>
<td>16</td>
<td>hours</td>
</tr>
</tbody>
</table>

EVSE Condition
Power ON with output loading for maximum power and current

EVSE Monitoring
Periodic measurements of output power and current during the test

Compliance/ Acceptance Criteria
- Output power and current values to be within specified band
- Safety checks
 - To ensure protection against short circuit
 - To check the insulation resistance
11.11.1.7 Solar radiation
The test shall be carried out in accordance with IEC 60068-2-5, test Sa, procedure B/ IS 9000(Part 17) procedure B

Test Cycle

![Diagram of temperature and irradiation cycle]

Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature low</td>
<td>25</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature high</td>
<td>55</td>
<td>°C</td>
</tr>
<tr>
<td>Irradiation Duration</td>
<td>20</td>
<td>hours</td>
</tr>
<tr>
<td>Darkness duration</td>
<td>4</td>
<td>hours</td>
</tr>
<tr>
<td>No of cycles</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

EVSE Condition
Power ON with output loading for maximum power and current

EVSE Monitoring
Measurements of output power and current during the test at extreme pressure conditions

Compliance/ Acceptance Criteria
- Output power and current values to be within specified band
- Safety checks
 - To ensure protection against short circuit
 - To check the insulation resistance

11.11.1.8 Saline mist
The tests shall be carried out in accordance with IEC 60068-2-52, Kb test-severity -Two

Test Cycle

![Diagram of saline mist cycle]

3 cycles = 3 days
Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt mist chamber temp.</td>
<td>15-35</td>
<td>°C</td>
</tr>
<tr>
<td>Spray Duration</td>
<td>2</td>
<td>h</td>
</tr>
<tr>
<td>Humidity chamber temp.</td>
<td>40 +/-2</td>
<td>°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>93</td>
<td>%</td>
</tr>
<tr>
<td>Humidity storage period</td>
<td>20-22</td>
<td>h</td>
</tr>
<tr>
<td>No of cycles</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

EVSE Condition
Power ON with output loading for maximum power and current

EVSE Monitoring
Measurements of output power and current during the test at extreme pressure conditions

Compliance/ Acceptance Criteria
- Insulation Resistance test to be performed immediately within 1 min after damp heat
- Output power and current values to be within specified band
- Safety checks to ensure protection against short circuit

11.11.2 Mechanical environmental tests

11.11.2.1 General
After the following tests, no degradation of performance is permitted. Compliance is checked by verification after the test that

1) the IP degree is not affected;
2) the operation of the doors and locking points is not impaired;
3) the electrical clearances have remained satisfactory for the duration of the tests, and
4) for a charging station having a metallic enclosure, no contact between live parts and the enclosure has occurred, caused by permanent or temporary distortion.

For a charging station having an enclosure of insulating material, if the conditions above are satisfied, then damage such as small dents or small degrees of surface cracking or flaking are disregarded, provided that there are no associated cracks detrimental to the serviceability of the charging station.

11.11.2.2 Mechanical impact
The EVSE – AC body shall not be damaged by mechanical impact. Compliance is checked according to the test procedure described in IEC 60068-2-75 (severity) / IS 9000(Part 7/Sec 7) - impact energy value 20 J (5 kg at 0.4 m).
11.11.2.3 Stability

The EVSE - AC shall be installed as intended by the manufacturer's installation instructions. A force of 500 N shall be applied for 5 min in the horizontal direction to the top of the EVSE - AC in each of the four directions or in the worst possible horizontal direction. There shall be neither deterioration of the a.c. Electric vehicle charging neither station nor deformation at its summit greater than

50 mm during the load application;

10 mm alter the load application.

11.11.2.4 IP TESTING

The testing shall be carried out in accordance with IS/IEC 60529

Atmospheric conditions for water or dust tests

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>15 to 35</td>
<td>°C</td>
<td>As given in the test standard</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>25 to 75</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Air pressure</td>
<td>86 to 106</td>
<td>kPa</td>
<td></td>
</tr>
</tbody>
</table>

For EVSE-AC IP for Outdoor applications: IP 54

Test means and main test conditions for the tests for protection against dust

Dust chamber (Test device to verify protection against dust): As per test standard

Talcum powder: As per test standard

Category 2 Enclosures: Enclosures where no pressure difference relative to the surrounding air is present.

The enclosure under test is supported in its normal operating position inside the test chamber, but not connected to a vacuum pump. Any drain-hole normally open shall be left open for the duration of the test.

Duration of Test: 8 h.

Acceptance: The protection is satisfactory if, on inspection, talcum powder has not accumulated in a quantity or location such that has with any other kind of dust; it could interfere with the correct operation of the equipment or impair safety.
Test means and main test conditions for the tests for protection against water

<table>
<thead>
<tr>
<th>Test Means</th>
<th>Water flow</th>
<th>Duration</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillating tube, as per test std., Spray ± 180 deg from vertical distance, max. 200 mm vertical or Spray nozzle, as per std. Spray ± 180 deg from vertical</td>
<td>0,07 l/min +/- 5 % multiplied by number of holes</td>
<td>10 min</td>
<td>As per test standard</td>
</tr>
<tr>
<td>or</td>
<td>10 l/min ± 5 %</td>
<td>1 min/m² at least 5 min</td>
<td>As per test standard</td>
</tr>
</tbody>
</table>

For EVSE –AC IP for Indoor applications: IP 23

Test means and main test conditions for the tests for protection against dust

Test means: The object probe (rigid sphere without handle or guard with 12.5 mm diameter) is pushed against any openings of the enclosure with the force 30 N ± 10 %

Duration of Test: 8 h.

Acceptance: The protection is satisfactory if, the protection is satisfactory if the full diameter of the object probe does not pass through any opening.

Test means and main test conditions for the tests for protection against water

<table>
<thead>
<tr>
<th>Test Means</th>
<th>Water flow</th>
<th>Duration</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillating tube, as per test std., Spray ± 60 deg from vertical distance, max. 200 mm vertical or Spray nozzle, as per std. Spray ± 60 deg from vertical</td>
<td>0.07 l/min ± 5 % multiplied by number of holes</td>
<td>10 min</td>
<td>As per test standard</td>
</tr>
<tr>
<td>or</td>
<td>10 l/min ± 5 %</td>
<td>1 min/m² at least 5 min</td>
<td>As per test standard</td>
</tr>
</tbody>
</table>

11.11.3 Electromagnetic environmental tests

11.11.3.1 Immunity to EM disturbances

General
The electric vehicle charging station shall not become dangerous or unsafe as a result of the application of the tests defined in this standard.

A functional description and a definition of performance criteria during, or as a consequence of, the EMC testing shall be provided by the manufacturer and noted in the test report based on the following criteria.
Performance criterion A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. In some cases, the performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. In some cases, the performance level may be replaced by a permissible loss of performance. During the test, however, degradation of performance is allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the loss of function can be restored by operation of the controls.

In any case, safety functions and metering shall be maintained (level A).

11.11.3.2 Immunity to electrostatic discharges

The EVSE – AC shall withstand electrostatic discharges.

Minimal requirement (IEC 61000-4-2) / IS 14700 (Part 4/See 2): 8 kV (in air discharge) or 4 kV (contact discharge).

Performance criterion: B.

Compliance is checked according to IEC 61000-4-2/ IS 14700 (Part 4/See 2). In the standard, the contact discharge method is mandatory. Tests shall be carried out with the EVSE - AC connected to a resistive load at its rated output power.

Immunity to low-frequency conducted disturbances
Tests shall be carried out with the EVSE - AC connected to a resistive load at its rated output power.

a) Supply voltage harmonics
The EVSE – AC, powered by the a.c. supply network (mains), shall withstand the voltage harmonics of the main supply, in the frequency range 50 Hz - 2 kHz, generally caused by other non-linear loads connected to the a.c. supply network.

Minimum requirement: compatibility levels of IEC 61000-2-2 multiplied by a factor of 1, 7. Performance criteria: A for charging functions.
Compliance is checked by simulating the above conditions (IEC 61000-4-1/ IS 14700 (Part 4/sec1)).

b) Supply voltage dips and interruptions
The EVSE - AC, powered by the a.c. supply network (mains), shall withstand the voltage dips and interruptions of the a.c. supply, generally caused by faults on the a.c. supply network.

Minimum requirement: voltage reduction of 30 % of nominal voltage for 10 ms. Performance criterion: B for charging functions.

Minimum requirement: voltage reduction of 50% for 100 ms.
Performance criterion: B for charging functions.

Minimum requirement: voltage reduction >95% for 5 s.
Performance criterion: B for charging functions.

Compliance is checked by simulating the above conditions (see IEC 61000-4-11/ IS 14700 (Part 4/sec 11)).

c) Immunity to voltage unbalance
The EVSE - AC, powered by a three-phase a.c. supply (mains), shall withstand voltage unbalance of the a.c. supply.

Minimum requirement: under consideration.
Performance criteria: under consideration.

d) DC component
The EVSE - AC, powered by the a.c. supply network (mains), shall withstand the d.c. components, generally caused by asymmetrical loads.

Minimal requirement: under consideration.
Performance criteria: under consideration.

Immunity to high-frequency conducted disturbances

Tests shall be carried out with the EVSE – AC connected to a resistive load at its rated output power.

a) Fast transient bursts

The EVSE - AC, powered by the a.c. supply network (mains), shall withstand common-mode conducted disturbances to levels given in IEC 61000-4-4/ IS 14700 (Part 4/Set 4), generally caused by the switching of small inductive loads, relay contacts bouncing, or switching of high-voltage switchgear.

Minimal requirement (IEC 61000-4-4/ IS 14700 (Part 4/Set 4): 2 kV, for a time greater than 1 min and a repetition rate of the impulses of 5 kHz.
Performance criterion: B for charging functions.
Compliance is checked by tests according to IEC 61000-4-4/ IS 14700 (Part 4/Set 4).

The tests shall be made on all power cables and on 1/0 signal and control cables, if any, normally connected to EVSE - AC during the charge. For 1/0 signal and control cables the voltage level is divided by two.

b) Voltage surges

The EVSE - AC, powered by the a.c. supply network (mains), shall withstand the voltage surges, generally caused by switching phenomena in the power a.c. supply network, faults or lightning strokes (indirect strokes).

Minimal requirement: 1,2/50 j.lS surges, 2 kV in common mode, 1 kV in differential mode. Performance criteria: C for charging functions.

Compliance is checked by tests according to IEC 61000-4-5.

The tests shall be made on all power cables. Tests shall be carried out with the EVSE - AC connected to a resistive load at rated output power.

Immunity to radiated electromagnetic disturbances

The EVSE - AC shall withstand radiated electromagnetic disturbances.

Minimal requirement (IEC 61000-4-3): 3 V/m in the frequency range 80 MHz to 1000 MHz.

Performance criterion: A.

Minimal requirement (IEC 61000-4-3): 10 V/m in the frequency range 80 MHz to 1000 MHz.

Performance criterion: B.

Compliance is checked by tests according to IEC 61000-4-3.

Tests shall be carried out with the EVSE - AC connected to a resistive load at rated output power.

11.11.3.3 Emitted EM disturbances

Low-frequency conducted disturbances

Input current distortion of the EVSE – AC shall not be excessive.

The harmonic limits for the input current of the EVSE - AC, with no load connected, shall be in accordance with IEC 61000-3-2.

Compliance is checked according to IEC 61000-3-2.
High frequency conducted disturbances

a) AC input terminal

Conducted disturbances emitted at the input of the EVSE - AC, with a resistive load at its rated output power, shall be less than the amplitude of the level defined in figure 1.

Compliance is checked according to CISPR 22 and CISPR 16.

b) Signal I/O and control terminals

Conducted disturbances emitted at signal I/O and control terminals, if any, shall be less than the amplitude of the level defined in figure 2, using a quasi-peak detector.
Compliance is checked according to CISPR 22 and CISPR 16.

Radiated electromagnetic disturbances

a) Magnetic field (150 kHz- 30 MHz)

Under consideration.

b) Electrical field (30 MHz- 1 000 MHz)

Radiated disturbances by the EVSE-AC at 10 m, operating with a resistive load at its rated output power, shall not exceed the limits given in figure 3, using a quasi-peak detector.

![Figure 3 - Limit levels of radiated emission](image)

Compliance is checked according to CISPR 22 and CISPR 16.

11.12 Latching of the retaining device

An interlock may rely on the retaining device to avoid disconnection under load if this function is not provided by the connector.

11.13 Service

The socket-outlet should be designed so that a certified technician could remove, service and replace it if is necessary.

11.14 Marking and instructions

11.14.1 Connection instructions

Instructions for the connection of the electric vehicle to the EVSE-AC shall be provided with the vehicle, with the user's manual and on the EVSE-AC.
11.14.2 Legibility
The markings required by this standard shall be legible with corrected vision, durable and visible during use.

Compliance is checked by inspection and by rubbing the marking by hand for 15 s with a piece of cloth soaked with water and again for 15 s with a piece of cloth soaked with petroleum spirit.

After all the tests of this standard, the marking shall be easily legible; it shall not be easily possible to remove marking plates and they shall show no curling.

11.14.3 Marking of EVSE - AC
The station shall bear the following markings in a clear manner:

- Name or initials of manufacturer;
- Equipment reference;
- Serial number;
- Date of manufacture; rated voltage in V; rated frequency in Hz; rated current in A; number of phases;
- IP degrees;
- "Indoor Use Only", or the equivalent, if intended for indoor use only;
- Class of EV depending on Load Capacity (Annexure E)

For a Class II station, the symbol shall clearly appear in the markings;

Some minimal additional information can possibly appear on the station itself (phone number, address of contractor).

Compliance is checked by inspection and tests.

11.15 Telecommunication network
Tests on any telecommunication network or telecommunication port on the EVSE, if present, shall comply with IEC 60950-1.
ANNEX A :
Pilot function through a control pilot circuit using PWM modulation and a control pilot wire
(Normative)

A.1 General

This annex concerns all charging systems that ensure the pilot function with a pilot wire circuit with PWM modulation in order to define the available current level in AC Slow and AC Fast charging. This annex describes the functions and sequencing of events for this circuit based on the recommended typical implementation circuit parameters.

NOTE: This annex is not applicable to vehicles using pilot functions that are not based on a PWM signal and a pilot wire.

A.2 Control pilot circuit

Figure A.1 and A.2 show the basic principle of operation of the control pilot circuit.
Parameters of the circuits are defined in Table A.1, Table A.2, Table A.3, Table A.5, Table A.6, and Table A.7

NOTE: Stray capacities (Cv and Cc) between pilot and earth are not shown on figure (see Tables A.1 and A.2).

Figure A.1
Typical control pilot circuit
The simplified circuit shall not be used for vehicles drawing more than 15 A single phase. It shall not be used with 3-phase supply.

NOTE: This circuit gives an equivalent result to the circuit shown in Figure A.1 when the switch S2 is closed. The simplified control pilot circuit cannot create vehicle states A and B as defined in Table A.3
Table A.1: EVSE Control Pilot Circuit Parameters (see Figures A.1 and A.2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator open circuit positive voltage c</td>
<td>Voch</td>
<td>12.00 (+/- 0.6)</td>
<td>V</td>
</tr>
<tr>
<td>Generator open circuit negative voltage c</td>
<td>Vocl</td>
<td>-12.00 (+/- 0.6)</td>
<td>V</td>
</tr>
<tr>
<td>Frequency</td>
<td>Fo</td>
<td>1000 (+/- 0.5 %)</td>
<td>Hz</td>
</tr>
<tr>
<td>Pulse Width b,c</td>
<td>Pwo</td>
<td>Per Table A.4 (+/- 25 µs)</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Rise Time (10% to 90%) c</td>
<td>Trg</td>
<td>2</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Fall Time (90% to 10%) c</td>
<td>Tfg</td>
<td>2</td>
<td>µs</td>
</tr>
<tr>
<td>Minimum Settling time to 95% steady state c</td>
<td>Tsg</td>
<td>3</td>
<td>µs</td>
</tr>
<tr>
<td>Equivalent Source Resistance c</td>
<td>R1</td>
<td>1000 (+/- 3%)</td>
<td>Ω</td>
</tr>
<tr>
<td>Recommended EMI suppression</td>
<td>Cs</td>
<td>300</td>
<td>pF</td>
</tr>
<tr>
<td>Maximum Total Cable d Capacity + Cs</td>
<td>Cs+Cc</td>
<td>3100</td>
<td>pF</td>
</tr>
</tbody>
</table>

a. Tolerances to be maintained over the full useful life and under environmental conditions as specified by the manufacturer.
b. Measured at 0 V crossing of the +/- 12 V Signal.
c. Measured at point Vg as indicated on Figure A.1.
d. Typical vehicle cord capacities (Cc) should be minimized and less than 2000 pF

Table A.2: Vehicle control pilot circuit values and parameters (see Figures A.1, A.2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent resistor value</td>
<td>R2</td>
<td>2.74k (+/- 3%)</td>
<td>Ω</td>
</tr>
<tr>
<td>Switched resistor value for vehicles not requiring Ventilation</td>
<td>R3</td>
<td>1.3k (+/- 3%)</td>
<td>Ω</td>
</tr>
<tr>
<td>Switched resistor value for vehicles requiring Ventilation</td>
<td>R3</td>
<td>270 (+/- 3%)</td>
<td>Ω</td>
</tr>
<tr>
<td>Equivalent total resistor value no ventilation (Figure A.2)</td>
<td>Re</td>
<td>882 (+/- 3 %)</td>
<td>Ω</td>
</tr>
<tr>
<td>Equivalent total resistor ventilation required (Figure A.2)</td>
<td>Re</td>
<td>246 (+/- 3 %)</td>
<td>Ω</td>
</tr>
<tr>
<td>Diode Voltage Drop (2.75 – 10 mA, -40 °C to + 85 °C)</td>
<td>Vd</td>
<td>0.7 (+/- 0.15)</td>
<td>V</td>
</tr>
<tr>
<td>Maximum total equivalent input capacity</td>
<td>Cv</td>
<td>2400</td>
<td>pF</td>
</tr>
</tbody>
</table>

Tolerances are to be maintained over full useful life and under design environmental conditions.
Table A.3: Pilot Functions

<table>
<thead>
<tr>
<th>Vehicle State</th>
<th>Vehicle Connected</th>
<th>S2</th>
<th>Charging Possible</th>
<th>$V_a \ a$</th>
<th>$V_b \ b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No</td>
<td>Open</td>
<td>No</td>
<td>12 V$_d$</td>
<td>$V_b = 0$</td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>Open</td>
<td>No</td>
<td>9 V$_b$</td>
<td>R2 detected</td>
</tr>
<tr>
<td>C</td>
<td>Yes</td>
<td>Closed</td>
<td>Vehicle Ready</td>
<td>6 V$_c$</td>
<td>R3 = 1.3 kΩ +/− 3% Charging area ventilation not required</td>
</tr>
<tr>
<td>D</td>
<td>Yes</td>
<td>Open</td>
<td>No</td>
<td>3 V$_c$</td>
<td>R3 = 270 Ω +/− 3% Charging area ventilation required</td>
</tr>
<tr>
<td>E</td>
<td>Yes</td>
<td>Open</td>
<td>No</td>
<td>0 V</td>
<td>$V_b=0$: EVSE, utility problem or utility power not available, pilot short to earth</td>
</tr>
<tr>
<td>F</td>
<td>Yes</td>
<td>Open</td>
<td>No</td>
<td>-12 V</td>
<td>EVSE not available</td>
</tr>
</tbody>
</table>

a. All Voltages are measured after stabilization period, tolerance +/− 1V
b. The EVSE generator may apply a steady state DC Voltage or a +/−12V square wave during this period. Duty cycle indicates the available current as in Table A.5.
c. The Voltage measured is a function of the value of R3 in Figure A.1. (Indicated as R_e in Table A.2)
d. 12V Static voltage

Typical Start-up and Shut-down sequence:
The figure A.3 shows the sequence of a typical charging cycle under normal operating conditions. The sequences are detailed in Table A.4

![Figure A.3 – Typical charging cycle under normal operating conditions](image-url)
Table A.4: Description of Connecting sequences as shown in Figure A.3

<table>
<thead>
<tr>
<th>State</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>B -> C,D</td>
</tr>
<tr>
<td>5</td>
<td>C,D</td>
</tr>
<tr>
<td>6</td>
<td>C,D</td>
</tr>
<tr>
<td>7</td>
<td>C,D</td>
</tr>
<tr>
<td>8</td>
<td>C,D</td>
</tr>
<tr>
<td>9</td>
<td>C,D -> B</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
</tr>
</tbody>
</table>

NOTE The EVSE should allow removal of the plug if the end of the Charging session is ended by entering State A.
Table A.5: Pilot Duty Cycle Provided by EVSE

<table>
<thead>
<tr>
<th>Available Line Current</th>
<th>Nominal Duty Cycle Provided by EVSE (Tolerance +/- 1 percent point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Communication will be used to control an Off-board DC Charger or communicate available line current for an On-board charger</td>
<td>5% Duty Cycle</td>
</tr>
<tr>
<td>Current from 6 A to 51 A</td>
<td>(% Duty cycle) = current[A] / 0.6</td>
</tr>
<tr>
<td></td>
<td>10% ≤ Duty Cycle ≤ 85%</td>
</tr>
<tr>
<td>Current from 51 A to 80 A</td>
<td>(% Duty cycle) = (current[A] / 2.5) + 64</td>
</tr>
<tr>
<td></td>
<td>85% < Duty Cycle ≤ 96%</td>
</tr>
</tbody>
</table>

Table A.6: Maximum Current to be drawn by Vehicle

<table>
<thead>
<tr>
<th>Nominal Duty Cycle Interpretation by Vehicle</th>
<th>Maximum current to be drawn by vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty Cycle < 3%</td>
<td>Charging not allowed</td>
</tr>
<tr>
<td>3% ≤ Duty Cycle ≤ 7%</td>
<td>Indicates that digital communication will be used to control an off-board DC charger or communicate available line current for an on-board charger. Digital communication may also be used with other duty cycles. Charging is not allowed with digital communication. 5% Duty cycle shall be used if the pilot function wire is used for digital communication</td>
</tr>
<tr>
<td>7% ≤ Duty Cycle ≤ 8%</td>
<td>Charging not allowed</td>
</tr>
<tr>
<td>8% ≤ Duty Cycle ≤ 10%</td>
<td>6 A</td>
</tr>
<tr>
<td>10% ≤ Duty Cycle ≤ 85%</td>
<td>Available current = (% duty cycle) x 0.6 A</td>
</tr>
<tr>
<td>85% ≤ Duty Cycle ≤ 96%</td>
<td>Available current = (% duty cycle – 64) x 2.5 A</td>
</tr>
<tr>
<td>96% ≤ Duty Cycle ≤ 97%</td>
<td>80 A</td>
</tr>
<tr>
<td>Duty Cycle > 97%</td>
<td>Charging not allowed</td>
</tr>
</tbody>
</table>

If the PWM signal is between 8% and 97%, the maximum current may not exceed the values indicated by the PWM even if the digital signal indicates a higher current.
Table A.7: EVSE Timing (see Figure A.3)

<table>
<thead>
<tr>
<th>Time Variable</th>
<th>Duration</th>
<th>Description</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1 and t_{1a}</td>
<td>No maximum</td>
<td>Turn on of 1 kHz oscillator. The frequency and voltage shall always conform to the values indicated in Table A.1</td>
<td></td>
</tr>
<tr>
<td>t_{ACon}</td>
<td>3 s</td>
<td>Beginning of supply of AC power after detection of State C or State D (vehicle request for energy). The state C is maintained while the vehicle is connected provided the EVSE is capable of supplying further energy.</td>
<td>If conditions cannot be met EVSE should send one of the following: Steady state voltage 5% PWM, state E or F</td>
</tr>
<tr>
<td>$t_{external}$</td>
<td>10 s</td>
<td>Modification of pulse-width in response to an external command to EVSE.</td>
<td>The external command may be a manual setting or command from grid management systems</td>
</tr>
<tr>
<td>t_{ACoff1}</td>
<td>100 ms</td>
<td>Delay until contactor opens and terminates AC energy transfer in response to S2 opened.</td>
<td>S2 will cause pilot voltage change which, when detected by EVSE causes opening of contractors</td>
</tr>
<tr>
<td>T_{2a}</td>
<td>No maximum</td>
<td>The state B is maintained while the vehicle is connected provided the EVSE is capable of supplying further energy.</td>
<td>The duty cycle shall indicate the current available as in Table A.5</td>
</tr>
<tr>
<td>$t_{ventilation}$ (not shown in Figure A.3)</td>
<td>3 s maximum</td>
<td>Delay for ventilation command turn on after transition from state C (6V) to state D(3V).</td>
<td></td>
</tr>
</tbody>
</table>

Other conditions for termination of energy supply

<table>
<thead>
<tr>
<th>Duration</th>
<th>Description</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 s maximum</td>
<td>Delay for opening of contacts to terminate energy supply if abnormal conditions are encountered.</td>
<td>This typically includes out of spec voltages of pilot, ventilation, non-respect of current drawn (if measured by EVSE)</td>
</tr>
<tr>
<td>3s maximum</td>
<td>Delay for turning off the square wave oscillator after transition from State B, C or D to state A.</td>
<td></td>
</tr>
<tr>
<td>100 ms maximum</td>
<td>Delay for opening contact if local proximity switch is</td>
<td>This applies to connectors using the</td>
</tr>
<tr>
<td>Delay</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2s maximum</td>
<td>Delay for applying a static 12V signal after transition from state B, C or D, to state A</td>
<td></td>
</tr>
</tbody>
</table>

EV timing (figure A.3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{S2}</td>
<td>No maximum</td>
<td>S2 turn – request for AC supply</td>
</tr>
<tr>
<td>t_{on}</td>
<td>No maximum</td>
<td>Beginning of charging</td>
</tr>
<tr>
<td>t_{ACoff2}</td>
<td>3s maximum</td>
<td>Stop charger current draw, set S2 open if Pilot signal out of tolerance, state E or state F detected</td>
</tr>
<tr>
<td>t_{change}</td>
<td>5s maximum</td>
<td>Change of current following change in PWM duty cycle</td>
</tr>
</tbody>
</table>

The charging profile and timing are controlled by the vehicle. Ramp up of current should only be possible when voltage is detected.

Only applies to systems using complete pilot circuit described in Figure A.1

Delay for stopping charging current drawn by vehicle if proximity contact opened
ANNEX B:

Example of a circuit diagram for a basic vehicle coupler
(Informative)

B.1 General
This annex describes circuit diagrams for AC charging methods using the basic interface (see Figures B.1 and B.2).

B.2 Circuits diagrams for AC Charging modes, using a basic single phase vehicle coupler
Clause B.2 of this annex shows the application of a single phase basic interface fitted with a switch on the proximity circuits.

Clause B.3 of this annex shows the application of a three phase basic interface that is not fitted with a switch on the proximity circuit, used for single and three-phase supply.

Components and functions in the circuit diagrams shown in Figures B.1 and B.2 are as follows.

The pilot function controller is located on the mains side.

This circuit realizes the basic functions described in Annex A. The circuit is normally supplied from a low voltage source that is isolated from the mains by a transformer and contains a ±12 V, 1000 Hz pulse width modulated oscillator that indicates the power available from the socket.

Pilot function circuit:

AC Fast charging mode diagram is drawn with a hard wired pilot functions as described in Annex A. The basic functions described in Annex A are represented by R1, R2, R3, D and S2 (see Figure A.1).

The values indicated in Annex A should be used. (See Table A.2).

Table B.1
Identification of components used with basic single phase connector

<table>
<thead>
<tr>
<th>Name of component</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Phase and neutral contacts</td>
</tr>
<tr>
<td></td>
<td>Vehicle coupler power contacts</td>
</tr>
<tr>
<td>3</td>
<td>Earth protection contact</td>
</tr>
<tr>
<td>4</td>
<td>Pilot function contact</td>
</tr>
<tr>
<td>5</td>
<td>Proximity detection contact</td>
</tr>
<tr>
<td></td>
<td>Indicates the presence of the connector to vehicle.</td>
</tr>
</tbody>
</table>
Used to signal correct insertion of the vehicle connector into the vehicle inlet. Can be used to avoid Un-intentional live disconnect (see Figure B.1 and Note).

<table>
<thead>
<tr>
<th>Components necessary for hard wired control pilot function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistances, diodes and control switch R1,R2,R3, D,S1,S2</td>
</tr>
<tr>
<td>Resistances and push button switch R4,R5,R6, R7,S3</td>
</tr>
</tbody>
</table>

NOTE: The auxiliary coupler contact can be used for un-intentional live disconnect avoidance using switch on vehicle connector. For this function, the push button is linked to a mechanical locking device. The depressing S3 un-locks the coupler and opens the circuit. The opening of S3 stops charging operation and contributes to prevention of un-intentional live disconnect. This function may also be achieved using proximity switches or contacts on the vehicle inlet cover or on the locking device.

Figure B.1
AC Slow Charging Mode with output option 1 using basic single phase vehicle coupler

NOTE 1: There is no pilot function in AC slow charging mode and pin 4 is not compulsory.

NOTE 2: In this drawing switch S3 can be used for prevention of un-intentional live disconnect.
B.3 Component values for all diagrams in Figures B.1 and B.2
Component values for all diagrams in Figures B.1 to B.2 are specified in Table B.2.

Table B.2 – Component values for all drawings

<table>
<thead>
<tr>
<th>Value</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2, R3</td>
<td>As defined in Tables A.1 and A.2</td>
</tr>
<tr>
<td>R4</td>
<td>330 Ω ± 10 %</td>
</tr>
<tr>
<td>R5</td>
<td>2 700 Ω ± 10 %</td>
</tr>
<tr>
<td>R6</td>
<td>150 Ω ± 10 %</td>
</tr>
<tr>
<td>R7</td>
<td>330 Ω ± 10 %</td>
</tr>
<tr>
<td>+V DC</td>
<td>Low voltage supply<sup>a</sup></td>
</tr>
</tbody>
</table>

^a A +5 V regulated supply is recommended.

B.4 Circuits diagrams for AC Fast Charging, using a basic three-phase accessory without proximity switch

Figure B.2 shows a three phase interface accessory that is used three phase supply. The current coding function described in B.4 is indicated. Values of the pull-up resistances and the Rc are indicated in Table B.3.

NOTE: The schemes indicated in Figures 1, 2 and 3 can also be realized with this connector provided the switch S3 is not required.
B.5 System for simultaneous proximity detection and current coding for vehicle connectors and plugs

Vehicle connectors and plugs using the proximity contact for simultaneous proximity detection and current capability coding of the cable assembly set shall have a resistor electrically placed between proximity contact and earthing contact (see Figure B.5) with a value as indicated in Table B.3.

The resistor shall be coded to the maximum current capability of the cable assembly. The EVSE shall interrupt the current supply if the current capability of the cable is exceeded as defined by the value of R_c. The resistor is also used for proximity detection.

<table>
<thead>
<tr>
<th>Current capability of the cable assembly</th>
<th>Equivalent resistance of R_c</th>
<th>Tolerance ± 3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 A</td>
<td>1.5 kΩ, 0.5 Wa,b</td>
<td></td>
</tr>
<tr>
<td>20 A</td>
<td>680Ω, 0.5 Wa,b</td>
<td></td>
</tr>
<tr>
<td>32 A</td>
<td>220Ω, 0.5 Wa,b</td>
<td></td>
</tr>
<tr>
<td>63 A (3 phase) / 70 A (1 phase)</td>
<td>100Ω, 0.5 Wa,b</td>
<td></td>
</tr>
</tbody>
</table>

a The power dissipation of the resistor caused by the detection circuit shall not exceed the value given above. The value of the pull-up resistor shall be chosen accordingly.

b Resistors used should preferably fail open circuit failure mode. Metal film resistors commonly show acceptable properties for this application.

c Tolerances to be maintained over the full useful life and under environmental conditions as specified by the manufacturer.

Coding resistors, as indicated in Table B.3 shall be used in vehicle connectors and plugs, Type 2.

NOTE: Type 2 vehicle connectors and plugs are being included in IEC 62196-2 (under development).

![Figure B.4](image)

Figure B.4

Diagram for current capability coding of the cable assembly

The same circuit diagram is used for the plug and EVSE outlet.
ANNEX C
Connectors for AC Slow Charging and AC Fast Charging

AC Slow:

The connector (female) to be used on the EVSE Side for AC Slow Charging is IEC 60309. The connector will be used at the ratings mentioned under EVSE – AC Slow. IEC 60309 Blue Connectors are to be used for this application.

The connector on the EVSE side and the mating connector are as below:

IEC 60309 Female Connector

![IEC 60309 Female Connector](image1)

IEC 60309 Male Connector

![IEC 60309 Male Connector](image2)

<table>
<thead>
<tr>
<th>Pins</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>Protective Earth</td>
</tr>
</tbody>
</table>

For details, refer **IS 60309(Part 1): 2002/ IEC 60309-1:1999, Plugs, socket-outlets and couplers for industrial purposes – Part 2: Dimensional interchangeability requirements for pin and contact-tube accessories**
AC Fast:

The connector (female) to be used on the EVSE Side for AC Fast Charging is IEC 62196 – Type 2. The connector will be used at the ratings mentioned under EVSE – AC Fast.

IEC 62196-Type 2 Female Connector

IEC 62196-Type 2 Male Connector

<table>
<thead>
<tr>
<th>Pins</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
</tr>
<tr>
<td>3</td>
<td>L3</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>Control Pilot</td>
</tr>
<tr>
<td>6</td>
<td>Protective Earth</td>
</tr>
<tr>
<td>7</td>
<td>Proximity</td>
</tr>
</tbody>
</table>

For details, refer IEC 62196-1:2003, *Plugs, socket-outlets, vehicle couplers and vehicle inlets – Conductive charging of electric vehicles – Part 1: Charging of electric vehicles up to 250 A a.c. and 400 A d.c.*
ANNEX D
Cable Assembly for AC Slow Charging and AC Fast Charging

The connection between the EVSE - AC and the vehicle should be established via appropriate charging cables. Refer to the diagrams in 6.2 for the connection options.

The following guidelines should be referred for using different type of cable assemblies for charging options in AC Slow and AC Fast charging.

<table>
<thead>
<tr>
<th>Cable Name</th>
<th>Description</th>
<th>EVSE Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EVSE to Power Converter and Power Converter to EV</td>
<td>AC Slow</td>
</tr>
<tr>
<td>B</td>
<td>EVSE to EV</td>
<td>AC Slow</td>
</tr>
<tr>
<td>C</td>
<td>Attached to EVSE</td>
<td>AC Slow</td>
</tr>
<tr>
<td>D</td>
<td>EVSE to EV</td>
<td>AC Fast</td>
</tr>
<tr>
<td>E</td>
<td>Attached to EVSE</td>
<td>AC Fast</td>
</tr>
<tr>
<td>F</td>
<td>Extension Cable for D to connect to EV</td>
<td>AC Fast</td>
</tr>
</tbody>
</table>

Note: Refer 6.2.1 and 6.2.2

EVSE - AC Slow

Cable A: The cable should have an industrial plug IEC 60309 (15 A, single-phase 230V) on the EVSE side and a suitable charging connector on the vehicle side with a power converter box in-line. The cable may be integrated with the Power converter or may be connected using connectors.

![Example for Cable A](image)

Cable B: The cables should have an industrial plug IEC 60309 (15 A, single-phase 230V) on the EVSE side and a suitable charging connector on the vehicle side.

![Example for Cable B](image)
Cable C: The cable be hardwired with EVSE – AC Fast and should have and should have an industrial plug IEC 60309 (15 A, single-phase 230V) at the end of the Cable.

Example for Cable C

Cable Assembly Specification for Cable A,B and C:

For < 1 kw

- All the cables and pins should have no power on them until the connector is safely plugged into a vehicle/ power converter.
- Cables will be assembled in such a way, that they cannot be re-connected again, so that no opening and manipulation is possible.
- Maximum length: Total 7.5m
- Colour of the cable sheath: Orange/ Black
- Nominal Voltage: 230 V (Single phase)
- Operating charging current: up to 15 A (max)
- **Cable construction:** Refer IEC 60245-6/ IS 9857 (Welding cables - Specifications)
- Protective type: IP 44
- Operating temperature: 0 to 55 deg C

For > 1 kW

- All the cables and pins should have no power on them until the connector is safely plugged into a vehicle/ power converter.
- Cables will be assembled in such a way, that they cannot be re-connected again, so that no opening and manipulation is possible.
- Maximum length: Total 7.5 m
- Colour of the cable sheath: Orange/ Black
- Rated Voltage: 230 V (Single phase)
- Operating charging current: up to 15A (max)
- **Cable construction: As per As per IEC 60245-6 /IS 9857 (Welding cables - Specifications)**
- Protective type: IP 44
- Operating temperature: 0 to 55 deg C
- Vehicle drive over requirements and compliance: As per IEC 62196-part 1 (Clause 33)

Note: Refer IEC 60245-6 /IS 9857 for cable mechanical properties and testing
EVSE - AC Fast

Cable D: The cable should have an IEC 62196 type 2 plug (63A, three-phase 415V) on the EVSE side and a suitable charging connector on the vehicle side.

Cable E: The cable be hardwired with EVSE – AC Fast and should have IEC 62196 type 2 socket (63A, three-phase 415V) on the other side.

Cable F: The cable should have an IEC 62196 type 2 plug (63A, three-phase 415V) on one side and a suitable charging connector on the vehicle side.

Cable Assembly Specification for Cable C, D and E:

- All the cables and pins should have no power on them until the connector is safely plugged into a vehicle.
- Cables will be assembled in such a way, that they cannot be re-connected again, so that no opening and manipulation is possible.
- Maximum length: C,D – 7.5m E – 1m
- Colour of the cable sheath: Orange/ Black
For Power Cables,
- **Rated Voltage:** 415 V (Three phase)
- **Operating charging current:** up to 63A (max)
- **Cable construction:** As per IEC 60245-6/ IS 9857 *(Welding cables - Specifications)*
 - Automatic charging current reduction at excessive heat
 - Nominal residual current: 30 mA
 - Protective type: IP 44
 - Operating temperature: 0 to 55 deg C

For Communication cables,
For the communication demands, typically two signal contacts and a hybrid-cable with an additional 1 x 0.5 mm² conductor are required.
- **Rated Voltage:** 30 V (Three phase)
- **Operating charging current:** 2 A (max)
- **Cable size:** 0.5 mm² multicore copper/ aluminium equivalent
- **Cable construction:** As per XXX
- **Vehicle drive over requirements and compliance:** As per IEC 62196-part 1 (Clause 33)

Note: Refer IS 9857:1990: 1988/ IEC 60245-6 for cable mechanical properties and testing
ANNEX E
EVSE Categories Based On Load Capacity

EVSE may be classified according to their maximum operating loads. Before installation, it should be ensured that the EVSE rating is lower than the Sanctioned load at the location where it is intended for use.

EVSE should be suitably labelled according to the Class and Maximum permissible loads.

<table>
<thead>
<tr>
<th>EVSE Class</th>
<th>Maximum Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-Slow A</td>
<td>1 kW (1 Phase)</td>
</tr>
<tr>
<td>AC-Slow B</td>
<td>2.2 kW (1 Phase)</td>
</tr>
<tr>
<td>AC-Slow C</td>
<td>3.3 kW (1 Phase)</td>
</tr>
<tr>
<td>AC-Fast A</td>
<td>10 kW (3 Phase)</td>
</tr>
<tr>
<td>AC-Fast B*</td>
<td>12 kW (3 Phase)</td>
</tr>
<tr>
<td>AC-Fast C*</td>
<td>23 kW (3 Phase)</td>
</tr>
<tr>
<td>AC-Fast D*</td>
<td>45 kW (3 Phase)</td>
</tr>
</tbody>
</table>

* Need permission for installation from the electricity board
ANNEX F
Power Converters (AC to DC)

A power converter is an AC - DC Converter to fulfil DC power requirements for charging of electric vehicles. Power converter is required for the EVs which don’t have an on-board charger. The power converter will be connected to EVSE - AC Slow in AC Slow charging mode as shown in 6.2.1. For the necessary cable connections refer to annexure D

The power converter should be rugged, simple to use, compact in size and waterproof. It should meet all necessary functional and safety requirements for charging of all supported types of electric vehicles.

Recommended Features:

- Input nominal voltage: 230 V, single phase AC
- Input Frequency: 50 Hz
- Full load current: 15 A
- Output Voltage: DC Voltage range as suitable for the EV
- Power ON indication
- Fault indication
- Mandatory safety features:
 - Ground fault detection
 - Output overload protection
 - Output short circuit protection
 - Output over voltage Protection
 - Connector presence and locking
 - Battery reverse protection
- Power Factor >= 0.9

Environmental:

- Operating temperature: 0 to 55°C
- IP Rating: Same as EVSE - AC Slow
- EMI compliance: Same as EVSE - AC Slow
- Safety compliance: Same as EVSE - AC Slow
ANNEX G
Periodic Compliance of EVSE

In addition to the conformity testing of the EVSE after manufacturing, the equipment should be tested yearly during its operation to ensure that there is no lapse of Safety or deterioration in functionality of the EVSE.

The EVSE must be assessed periodically for the following:

Generic Functional Verification: like VIN, Metering.

Mechanical conditions
1. Abrasion
2. Oxidation
3. Carbonization
4. Any other conditions which may lead to deterioration of functions or lead to lapse of safety.

Electrical conditions
1. Isolation resistance
2. Functioning of RCD detection and Isolation mechanism
3. Compliance to Sanctioned load capacity
4. Any other conditions which may lead to deterioration of functions or lead to lapse of safety.

All the compliance tests should be done in line with requirements mentioned in AIS 138 and based on visual inspection wherever applicable.